Tag: Performance Factor

Time Studies with your BlackBerry

Performing a time study is relatively easy compared to only few years ago.  The technologies available today allow studies to be conducted quite readily.

Time Studies and OEE (Overall Equipment Effectiveness)

The Performance factor for OEE is based on the Ideal Cycle Time of the process.  For fixed rate processes, the Name-Plate rate may suffice but should still be confirmed.  For other processes such a labour intensive operations, a time study is the only way to determine the true or ideal cycle time.

When measuring the cycle time, we typically use “button to button” timing to mark a complete cycle.  It can be argued that an operator may lose time to retrieve or pack parts or move containers.  Including these events in the gross cycle time will hide these opportunities.  It is better to exclude any events that are not considered to be part of the actual production cycle.

When calculating the Performance factor for Overall Equipment Effectiveness (OEE), the efficiency shortfalls will be noted by the less than 100% performance.  The reasons for this less than optimal level of peformance are attributed to the activities the operator is required to perform other than actually operating the machine or producing parts.

All operator activities and actions should be documented using a standardized operating procedure or standardized work methodology.  This will allow all activities to be captured as opposed to absorbed into the job function.

The BlackBerry Clock – Stopwatch

One of the tools we have used on the “fly” is the BlackBerry Clock’s Stopwatch function.  The stopwatch feature is very simple to use and provides lap time recording as well.

When performing time studies using a traditional stopwatch, being able to keep track of individual cycle times can be difficult.  With the stopwatch function, the history for each “lap” time is retained.  To determine the individual lap time or cycle time, we recommend dividing the total lapsed time by the number of completed cycles (or laps).

The individual lap times are subject to a certain degree of uncertainty or error as there will always be a lead or lag time associated with the pushing of the button on the BlackBerry to signal the completion of a cycle.  Although this margin of error may be relatively small, even with this level of technology, the human element is still a factor for consideration.

Once the time study is complete you can immediately send the results by forwarding them as an E-mail, PIN, or SMS.

The BlackBerry Camera – Video Camera

Another useful tool is the video camera.  Using video to record operations and processes allows for a detailed “step by step” analysis at any time.  This is particularly useful when establishing Standard Operating Procedures or Standardized Work.

Uploading videos and pictures to your computer is as easy as connecting the device to an available USB port.  In a matter of minutes, the data is ready to be used.

Video can also be used to analyze work methods, sequences, and also serves as a valuable problem solving tool.

Until Next Time – STAY Lean!

We are not affiliated with Research In Motion (RIM).  The intent of this post is to simply demonstrate how the technology can be used in the context described and presented.
Advertisements

OEE For Dedicated – Single Part – Processes

OEE For Dedicated – Single Part – Processes

Definition: 

Dedicated – Single Part – Process:  A process that produces a single product or slight variations on a theme and does not require significant tooling or equipment changeover events.

A single part process is the easiest application for a OEE pilot project.  The single part process also makes it easier to demonstrate some of the more advanced Lean Thinking tools that can be applied to improve your operation or process.  In our “Variation, Waste, and OEE” post, we introduced the potential impacts of variance to your organization.  We also restated our mission to control, reduce, and eliminate variation in our processes as the primary objective of LEAN.

We need to spend more time understanding what our true production capabilities are.  The single part process makes the process of understanding these principles much easier.  The lessons learned can then be applied to more complex or multipart processes.  In multipart or complex operations, production part sequencing may have a significant impact on hourly rates and overall shift throughput.  How would you know unless you actually had a model that provided the insight?

Process Velocity:  Measuring Throughput

Let’s start this discussion by asking a few simple questions that will help you to get your mind in gear.  Do you measure variation in production output?  Do you measure shift rates?  Do you use the “average” rate per hour to set up your production schedules?  How do you know when normal production rates have been achieved?  Does a high production rate on one shift really signify a process improvement or was it simply a statistically expected event?

Once again an example will best serve our discussion.  Assume the following data represents one week of production over three shifts:

Machine A:  Production Process Performance Report

Cycle Time (Seconds):   57      
Shift Standard (440 minutes) 440      
             
Day Shift Planned Quantity
Production Time Total Test Scrap Accept
Mon 1 440 420 1 2 417
Mon 2 440 390 1 1 388
Mon 3 440 320 1 3 316
Tue 1 440 361 1 1 359
Tue 2 440 392 1 5 386
Tue 3 440 365 1 2 362
Wed 1 440 402 1 7 394
Wed 2 440 317 1 6 310
Wed 3 440 430 1 1 428
Thu 1 440 453 1 5 447
Thu 2 440 419 1 3 415
Thu 3 440 366 1 1 364
Fri 1 440 400 1 2 397
Fri 2 440 411 1 4 406
Fri 3 440 379 1 2 376
Totals 15 6600 5825 15 45 5765

The following table is an extension of the above table and shows the unplanned downtime as well actual, standard, and ideal operating times.

Day Shift Unplanned Operating Time
Down Time Actual Standard Ideal
Mon 1 25 415.0 399.0 396.2
Mon 2 55 385.0 370.5 368.6
Mon 3 122 318.0 304.0 300.2
Tue 1 84 356.0 343.0 341.1
Tue 2 65 375.0 372.4 366.7
Tue 3 82 358.0 346.8 343.9
Wed 1 45 395.0 381.9 374.3
Wed 2 130 310.0 301.2 294.5
Wed 3 30 410.0 408.5 406.6
Thu 1 5 435.0 430.4 424.7
Thu 2 40 400.0 398.1 394.3
Thu 3 90 350.0 347.7 345.8
Fri 1 45 395.0 380.0 377.2
Fri 2 45 395.0 390.5 385.7
Fri 3 60 380.0 360.1 357.2
Totals 15 923 5677 5533.8 5476.8

The table below shows the OEE calculations for each day and shift worked.  Note that this table is also an extension of the above data.

Day Shift Overall Equipment Effectiveness (OEE)
Availability Performance Quality OEE
Mon 1 94.3% 96.1% 99.3% 90.0%
Mon 2 87.5% 96.2% 99.5% 83.8%
Mon 3 72.3% 95.6% 98.8% 68.2%
Tue 1 80.9% 96.3% 99.4% 77.5%
Tue 2 85.2% 99.3% 98.5% 83.3%
Tue 3 81.4% 96.9% 99.2% 78.2%
Wed 1 89.8% 96.7% 98.0% 85.1%
Wed 2 70.5% 97.1% 97.8% 66.9%
Wed 3 93.2% 99.6% 99.5% 92.4%
Thu 1 98.9% 98.9% 98.7% 96.5%
Thu 2 90.9% 99.5% 99.0% 89.6%
Thu 3 79.5% 99.3% 99.5% 78.6%
Fri 1 89.8% 96.2% 99.3% 85.7%
Fri 2 89.8% 98.8% 98.8% 87.7%
Fri 3 86.4% 94.8% 99.2% 81.2%
Totals 15 86.0% 97.5% 99.0% 83.0%

The results from the table above suggest that the process is running just short of world-class OEE (83% versus 90% for dedicated processes.  Note that 85% is considered world-class for multipart variable processes).  As you can see from the daily and shift results, a lot of variation is occurring over the course of the week.  This is the opportunity that we need to pursue further.  A quick scan of the data suggests that Wednesday 2nd shift and Monday 3rd shift are the main contributors to the reduced OEE.  We will investigate the data a little further to really understand what opportunities exist.

A dedicated, continuous process should yield a higher OEE since the process is not subject to continual setup and change over.  Although some model changes or variations to the existing product may exist, they are typically less disruptive.  A OEE of 90% may be an achievable target and is typical for most dedicated operations.

FREE Downloads

We are currently offering our Excel OEE Spreadsheet Templates and example files at no charge.  You can download our files from the ORANGE BOX on the sidebar titled “FREE DOWNLOADS” or click on the FREE Downloads Page.  These files can be used as is and can be easily modified to suit many different manufacturing processes.  There are no hidden files, formulas, or macros and no obligations for the services provided here.

Please forward your questions, comments, or suggestions to LeanExecution@gmail.com.  To request our services for a specific project, please send your inquiries to Vergence.Consulting@gmail.com.

We welcome your feedback and thank you for visiting.

Until Next Time – STAY Lean!

"Click"

Variance, Waste, and OEE

What gets managed MUST be measured – Including VARIANCE.

It is easy to get excited about the many opportunities that a well implemented LEAN Strategy can bring to your organization.  Even more exciting are the results.

Achieving improvement objectives implies that some form of measurement process exists – the proof.  A clear link should be established to the metric you choose and the activity being managed to support the ongoing improvement initiatives.

Measure with Meaning

Why are you “collecting” OEE data?  While OEE can and should be used to measure the effectiveness of your manufacturing operations, OEE on its own does not present a complete solution.  It is true that OEE presents a single metric that serves as an indicator of performance, however, it does not provide any insight with respect to VARIANCES that are or may be present in the system.

We have encountered numerous operations where OEE data can be very misleading.  OEE data can be calculated using various measurement categories:  by machine, part number, shift, employee, supervisor, department, day, month, and so on.

VARIANCE:  the leading cause of waste!

Quality professionals are more than familiar with variance.  Statistically capable processes are every quality managers dream.  Unfortunately, very little attention or focus is applied to variances experienced on the production side of the business.

Some may be reading this and wonder where this is going.  The answer is simple, rates of production are subject to variance.  Quite simply, if you review the individual OEE results of any machine for each run over an extended period of time, you will notice that the number is not a constant.  The performance, availability, and quality factors are all different from one run to the next.  One run may experience more downtime than another, a sluggish machine may result in reduced in performance, or material problems may be giving rise to increased quality failures (scrap).

So, while the OEE trend may show improvement over time, it is clear that variances are present in the process.  Quality professionals readily understand the link between process variation and product quality.  Similarly, variation in process rates and equipment reliability factors affect the OEE for a given machine.

We recommend performing a statistical analysis of the raw data for each factor that comprises OEE (Availability, Performance, and Quality) for individual processes.  Analysis of OEE itself requires an understanding of the underlying factors.  It is impractical to consider the application of ANOVA to OEE itself as the goal is to continually improve.

How much easier would it be if you could schedule a machine to run parts and know that you will get them when you needed them?  You can’t skip the process deep dive.  You need to understand how each process affects the overall top-level OEE index that is performance so you can develop and implement specific improvement actions.

The best demonstration we have seen that illustrates how process variation impacts your operation is presented through a “process simulation” developed from Eli Goldratt’s book, The Goal.  We will share this simulation in a separate post.  Experiencing the effect of process variation is much more meaningful and memorable than a spreadsheet full of numbers.

Conflict Management and OEE

In some environments we have encountered, the interpretation of LEAN strategy at the shop floor level is to set minimum OEE performance objectives with punitive consequences.  This type of strategy is certainly in conflict with any Lean initiative.  The lean objective is to learn as much as possible from the process and to identify opportunities for continual improvement.

Management by intimidation is becoming more of a rarity, however, we have found that they also give rise to the OEE genius.  If performance is measured daily, the OEE genius will make sure a high performing job is part of the mix to improve the “overall” result.  This is akin to taking an easy course of study to “pull up” your overall average.

It is clear from this example, that you will miss opportunities to improve your operation if the culture is tainted by conflicting performance objectives.  The objective is to reveal sources of variation to eliminate waste and variation in your process, not find better ways to hide it.

Variance in daily output rates are normal.  How much are you willing to accept?  Do you know what normal is?  Understanding process variance and OEE as complementary metrics will surely help to identify more opportunities for improvement.

FREE Downloads

We are currently offering our Excel OEE Spreadsheet Templates and example files at no charge.  You can download our files from the ORANGE BOX on the sidebar titled “FREE DOWNLOADS” or click on the FREE Downloads Page.  These files can be used as is and can be easily modified to suit many different manufacturing processes.  There are no hidden files, formulas, or macros and no obligations for the services provided here.

Please forward your questions, comments, or suggestions to LeanExecution@gmail.com.  To request our services for a specific project, please send your inquiries to Vergence.Consulting@gmail.com.

We welcome your feedback and thank you for visiting.

Until Next Time – STAY Lean!

"Click"

Problem Solving with OEE – Measuring Success

OEE in Perspective

As mentioned in our previous posts, OEE is a terrific metric for measuring and monitoring ongoing performance in your operation.  However, like many metrics, it can become the focus rather than the gage of performance it is intended to be.

The objective of measuring OEE is to identify opportunities where improvements can be made or to determine whether the changes to your process provided the results you were seeking to achieve.  Lean organizations predict performance expectations and document the reasons to support the anticipated results .  The measurement system used to monitor performance serves as a gauge to determine whether the reasons for the actual outcomes were valid.  A “miss” to target indicates that something is wrong with the reasoning – whether the result is positive or negative.

Lean organizations are learning continually and recognize the need to understand why and how processes work.  Predicting results with supported documentation verifies the level of understanding of the process itself.  Failing to predict the result is an indicator that the process is not yet fully understood.

Problem Solving with OEE

Improvement strategies that are driven by OEE should cause the focus to shift to specific elements or areas in your operation such as reduction in tool change-over or setup time, improved material handling strategies, or quality improvement initiatives.  Focusing on the basic tenets of Lean will ultimately lead to improvements in OEE.  See the process in operation (first-hand), identify opportunities for improvement, immediately resolve,  implement and document corrective actions, then share the knowledge with the team and the company.

Understanding and Managing Variance:

OEE data is subject to variation like any other process in your operation.  What are the sources of variation?  If there is a constant effort to improve performance, then you would expect to see positive performance trends.  However, monitoring OEE and attempting to maintain positive performance trends can be a real challenge if the variances are left unchecked.

Availability

What if change-over times or setup times have been dramatically reduced?  Rather than setting a job to run once a week, it has now been decided to run it daily (five times per week).  What if the total downtime was the same to make the same number of parts over the same period of time?  Did we make an improvement?

The availability factor may very well be the same.  We would suggest that, yes, a signficant improvement was made.  While the OEE may remain the same, the inventory turns may increase substantially and certainly the inventory on hand could be converted into sales much more readily.  So, the improvement will ultimately be measured by a different metric.

Performance

Cycle time reductions are typically used to demonstrate improvements in the reported OEE.  In some cases, methods have been changed to improve the throughput of the process, in other cases the process was never optimized from the start.  In other instances, parts are run on a different and faster machine resulting in higher rates of production.  The latter case does not necessarily mean the OEE has improved since the base line used to measure it has changed.

Quality

Another example pertains to manual operations ultimately controlled through human effort.  The standard cycle time for calculating OEE is based on one operator running the machine.  In an effort to improve productivity, a second operator is added.  The performance factor of the operation may improve, however, the conditions have changed.  The perceived OEE improvement may not be an improvement at all.  Another metric such as Labour Variance or Efficiency may actually show a decline.

Another perceived improvement pertains to Quality.  Hopefully there aren’t to many examples like this one – changing the acceptance criteria to allow more parts to pass as acceptable, fit for function, or saleable product (although it is possible that the original standards were too high).

Standards

Changing standards is not the same as changing the process.  Consider another more obvious example pertaining to availability.  Assume the change over time for a process is 3o minutes and the total planned production time is 1 hour (including change over time).  For simplicity of the calculation no other downtime is assumed.  The availability in this case is 50% ((60 – 30) / 60).

To “improve” the availability we could have run for another hour and the resulting availability would be 75% (120 – 30) / 120.  The availability will show an improvement but the change-over process itself has not changed.  This is clearly an example of time management, perhaps even inventory control, not process change.

This last example also demonstrates why comparing shifts may be compromised when using OEE as a stand-alone metric.  What if one shift completed the setup in 20 minutes and could only run for 30 minutes before the shift was over (Availability = 60%).  The next shift comes in and runs for 8 hours without incident or down time (Availability = 100%).  Which shift really did a better job all other factors being equal?

Caution

When working with OEE, be careful how the results are used and certainly consider how the results could be compromised if the culture has not adopted the real meaning of Lean Thinking.  The metric is there to help you improve your operation – not figure out ways to beat the system!

FREE Downloads

We are currently offering our Excel OEE Spreadsheet Templates and example files at no charge.  You can download our files from the ORANGE BOX on the sidebar titled “FREE DOWNLOADS” or click on the FREE Downloads Page.  These files can be used as is and can be easily modified to suit many different manufacturing processes.  There are no hidden files, formulas, or macros and no obligations for the services provided here.

Please forward your questions, comments, or suggestions to LeanExecution@gmail.com.  To request our services for a specific project, please send your inquiries to Vergence.Consulting@gmail.com.

We welcome your feedback and thank you for visiting.

Until Next Time – STAY Lean!

"Click"